NHS-Science Essential Standard 1 (Semester 2)

- **PSP1-HS-1**. Analyze data to support the claim that Newton's Second Law of Motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration
 - <u>Clarification Statement</u>: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.
 - <u>Assessment Boundary</u>: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.

Criteria	Advanced Understanding of Standard (4)	Proficient Understanding of Standard (3)	Approaching and Understanding of Standard (2)	Beginning, Does Not Meet Standard (1)	Non- Performance (0, M, I)
Calculate (using Newton's 2 nd Law) the force, mass, acceleration of any given object (if given two of three variables)	Student can calculate the value of any variable in Newton's Second Law by measuring two of the variables and calculating the third showing all calculations and including units.	If given two variables the student can calculate the value of the third variable showing all work and including correct units.	If given two variables the student can calculate the value of the third, shows work, but is missing the units.	If given two variables the student cannot calculate the third, does not show work, and does not include units.	Not enough evidence to determine performance.
Interpret a Velocity vs. Time graph to describe the motion of an object depicted in the graph.	Student can translate a Velocity vs. Time graph into a sentence or paragraph that details the motion of the object using terms accelerating, decelerating, at rest, or accelerating or decelerating at an increasing or decreasing rate.	Student can translate a Velocity vs. Time graph into a sentence or paragraph that details the motion of the object using terms accelerating, decelerating, at rest.	Student can translate a Velocity vs. Time graph into a sentence or paragraph that details the motion of the object using terms accelerating, decelerating, at rest with some inconsistencies or errors.	Student cannot translate a Velocity vs. Time graph into a sentence or paragraph detailing the motion of the object using terms accelerating, decelerating, at rest.	Not enough evidence to determine performance.
Construct a Velocity vs. Time graph if given information of how an object's motion changes over time.	Student can collect or measure information about the motion of an object and translate it into a graph of velocity vs. time.	If given information about an objects speed and direction (velocity) the student can translate it into a graph of velocity vs. time.	If given information about an objects speed and direction (velocity) the student can translate it into a graph of velocity vs. time but the graph is incomplete or contains errors.	If given information about an objects speed and direction (velocity) the student cannot translate it into a graph of velocity vs. time.	Not enough evidence to determine performance.

NHS-Science Essential Standard 2 (Semester 2)

- <u>PSP1-HS-2</u>. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is not net force on the system.
 - <u>Clarification Statement</u>: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of Newton's First Law of Motion (Inertia)
 - Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.

Criteria	Advanced Understanding of	Proficient Understanding	Approaching and Understanding of	Beginning, Does Not Meet	Non- Performance
Student understands the Law of Conservation of Momentum	Standard (4) A student understands that momentum can move from one object to another but it is not lost. An advanced student recognizes this law applies to closed	of Standard (3) A student understands that momentum can move from one object to another but it is not lost.	Standard (2) A student knows what momentum is (m * v) but cannot describe what it means to say momentum is conserved.	Student does not know what momentum is and cannot make a statement in terms of what it means to say momentum is conserved.	(0, M, I) Not enough evidence to determine performance.
Student can calculate momentum for a single object and collisions between objects (P=MV and M ₁ V ₁ = -(M ₂ V ₂)	systems (no outside, unbalanced forces) Student correctly calculates the momentum of a single object and for the momentum change for two <u>or</u> <u>more</u> objects in collisions including correct units on all numbers.	Student correctly calculates the momentum of a single object and for the momentum change for two objects in collisions including correct units on all numbers.	Student can correctly calculate the momentum of a single object including correct units but cannot calculate the momentum change of two objects in a collision.	Student cannot calculate momentum for a single object nor for two objects in a collision.	Not enough evidence to determine performance.
Student understands the law of Inertia	Student can describe Inertia as an object's tendency to resist changing its state of motion recognizing that it takes a sufficiently large force to overcome inertia and cause a change in motion. An advanced student recognizes that mass and inertia are directly related.	Student can describe Inertia as an object's tendency to resist changing its state of motion recognizing that it takes a sufficiently large force to overcome inertia and cause a change in motion.	Student can describe Inertia as an object's tendency to resist changing its state of motion but does not recognize that it takes a sufficiently large force to overcome inertia and cause a change in motion.	Student cannot describe inertia as a tendency of an object to resist changing its state of motion.	Not enough evidence to determine performance.

- **<u>PSP1-HS-3</u>**. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
 - <u>Clarification Statement</u>: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.
 - <u>Assessment Boundary</u>: Assessment is limited to qualitative evaluations and/or algebraic manipulations.

Criteria	Advanced Understanding of Standard (4)	Proficient Understanding of Standard (3)	Approaching and Understanding of Standard (2)	Beginning, Does Not Meet Standard (1)	Non- Performance (0, M, I)
Student can design a device to minimize the force experienced upon impact.	Student can design a device to minimize the force experienced upon impact by applying newton's second law equation F=MA. The advanced student also recognizes that it is the rate of deceleration that is the most important determining factor.	Student can design a device to minimize the force experienced upon impact by applying newton's second law equation F=MA	Student can design a device to minimize the force experienced upon impact but cannot apply newton's second law equation F=MA	Student cannot design a device to minimize the force experienced upon impact.	Not enough evidence to determine performance.
Student can evaluate a device that minimizes the force experienced upon impact.	Student can evaluate a device to minimize the force experienced upon impact by applying newton's second law equation F=MA. The advanced student can predict the force experienced with an assumed impulse. Also, advanced students can relate newton's first and third laws to the evaluation of their device.	Student can evaluate a device that minimizes the force experienced upon impact by identifying the strengths and limitations of the device and predicting/measuring its performance. (mass, velocity)	Student can evaluate a device that minimizes the force experienced upon impact by identifying the strengths and limitations of the device but cannot predicting its performance or measure its velocity.	Student cannot evaluate a device that minimizes the force experienced upon impact.	Not enough evidence to determine performance.
Student can refine a device they constructed to further minimize the force experienced upon impact.	Student can identify strengths and weaknesses of their device and make improvements to its performance. Advanced students will be able to specify how the impulse component of newton's second law is used in the refinement process.	Student can identify strengths and weaknesses of their device and make improvements to its performance.	Student can identify strengths and weaknesses of their device but cannot make improvements to its performance.	Student cannot refine a device that minimizes the force experienced upon impact.	Not enough evidence to determine performance.

- <u>PSP1-HS-4</u>. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
 - <u>Clarification Statement</u>: Emphasis on both quantitative and conceptual descriptions of gravitational and electric fields.

Criteria Advanced Proficient Approaching and Beginning Non					
	Advanced Understanding of Standard (4)	Proficient Understanding of Standard (3)	Approaching and Understanding of Standard (2)	Beginning, Does Not Meet Standard (1)	Non- Performance (0, M, I)
Student can understand that mass and distance are the determining factors of force strength in newton's law of gravitation.	Student can describe mass and distance as the factors that determine the force of gravity. Advanced students can show that the distance has a larger affect than mass because it is a squared term.	Student can describe mass and distance as the factors that determine the force of gravity.	Student knows what distance and mass are but cannot relate them to the strength of the gravitational force.	Student does not understand the factors that determine the strength of gravity	Not enough evidence to determine performance.
Student can solve for force, mass, or distance using newton's law of gravitation.	Student can solve for force, mass, or distance correctly a majority of the time with correct units included. Advanced students understand that the gravitational constant does not change and is the factor that relates mass and distance.	Student can solve for force, mass, or distance correctly a majority of the time with correct units included.	Student can solve for force, mass, or distance correctly a some of the time but does not included correct units.	Student cannot solve for force, mass, or distance and does not use units.	Not enough evidence to determine performance.
Student understands that charge and distance are the determining factors of force strength in Coulomb's law	Student can describe charge and distance as the factors that determine the electrostatic force. Advanced students can show that the distance has a larger affect than charge because it is a squared term.	Student can describe charge and distance as the factors that determine the electrostatic force.	Student knows what distance and charge are but cannot relate them to the strength of the electrostatic force.	Student does not understand the factors that determine the strength of force of charge.	Not enough evidence to determine performance.
Student can calculate force, charge, or distance using Coulomb's law	Student can solve for force, charge, or distance correctly a majority of the time with correct units included. Advanced students understand that the Coulomb's law constant relates charge and distance and can change depending on the medium in which the charge exists.	Student can solve for force, charge, or distance correctly a majority of the time with correct units included.	Student can solve for force, charge, or distance correctly a some of the time but does not included correct units.	Student cannot solve for force, charge, or distance and does not use units.	Not enough evidence to determine performance.

• Assessment Boundary: Assessment is limited to systems with two objects.

NHS-Science Essential Standard 5 (Semester 2)

- **<u>PSP1-HS-5</u>**. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.
 - <u>Assessment Boundary</u>: Assessment is limited to designing and conducting investigations with provided materials and tools.

Criteria	Advanced Understanding of Standard (4)	Proficient Understanding of Standard (3)	Approaching and Understanding of Standard (2)	Beginning, Does Not Meet Standard (1)	Non- Performance (0, M, I)
Student can plan and conduct an investigation showing that electricity can create a magnetic field.	Student successfully plans and conducts an investigation in which a device is built and used to demonstrate that electricity can create a magnetic field. Students should relate the strength of the device to the voltage, number of coils, and the metal in the core. Advanced students use the "right-hand-rule" to determine where the north and south poles are located.	Student successfully plans and conducts an investigation in which a device is built and used to demonstrate that electricity can create a magnetic field. Students should relate the strength of the device to the voltage, number of coils, and the metal in the core.	Student plans and conducts an investigation to build a device but unsuccessfully constructs the device and does not show evidence that electricity can be used to create a magnetic field. Student cannot relate the strength of the device to the voltage, number of coils, and the metal in the core.	Student cannot plan and conduct an investigation showing that electricity can create an magnetic field.	Not enough evidence to determine performance.
Student can plan and conduct an investigation showing that a moving magnet can generate an electric current.	Student successfully plans and conducts an investigation in which a device is built and used to demonstrate that a moving magnet can generate an electric current. Advanced students relate the amount of electricity generated to the number of wire coils and the size of the magnet used.	Student successfully plans and conducts an investigation in which a device is built and used to demonstrate that a moving magnet can generate an electric current.	Student plans and conducts an investigation to build a device but unsuccessfully constructs the device and does not show evidence that a moving magnet can create an electric current.	Student cannot plan and conduct an investigation showing that a moving magnet can generate an electric current.	Not enough evidence to determine performance.

NHS-Science Essential Standard 6 (Semester 2)

- <u>PSP2-HS-1</u>. Create a computational model to calculate the change in energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
 - Clarification Statement: Emphasis is on explaining the meaning of the mathematical expressions used in the model.
 - Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.

Criteria	Advanced Understanding of	Proficient Understanding of	Approaching and Understanding of	Beginning, Does Not Meet	Non- Performance
	Standard (4)	Standard (3)	Standard (2)	Standard (1)	(0, M, I)
Student	Student demonstrates	Student	Student understands	Student cannot	Not enough
understands that	that if a system is	demonstrates that	that energy changes	state how/why	evidence to
in a closed	closed the total	if a system is	from one form to	energy is	determine
system energy is	amount of energy	closed the total	another but cannot	conserved in	performance.
conserved. (law	remains the same	amount of energy	show how energy is	closed system.	
of conservation	while energy changes	remains the same	conserved during		
of energy)	from one form to	while energy	this process (in a		
	another. Advanced	changes from one	closed system)		
	students recognize	form to another.			
	the difference				
	between a closed an				
	open system.				
Student can	Student can track	Student can track	Student can draw an	Student cannot	Not enough
create an energy	energy	energy	energy flow	show/track the	evidence to
transformation	transformation from a	transformation	diagram but the	flow of energy	determine
diagram	source to its end use	from a source to	diagram includes	as it transforms	performance.
showing that	by drawing/labeling	its end use by	errors or incorrect	from one form	
energy can	an energy diagram.	drawing/labeling	transformations.	to another.	
change form but	Advanced students	an energy			
the total energy	can show that any	diagram.			
remains the	energy that appears to				· · ·
same.	be "lost" is accounted				
	for by including				
	friction/heat in their				
	diagram.				
Student can	Student can use the	Student can use	Student can	Student cannot	Not enough
show that the	work-energy theorem	the work-energy	describe what the	demonstrate	evidence to
amount of work	to show that the	theorem to show	work-energy	that work done	determine
that can be done	amount of work done	that the amount of	theorem states but	depends on the	performance.
by any closed	depends on the	work done	cannot use it to	amount of	
system is limited	energy available in a	depends on the	show how much	energy	
by the available	closed system.	energy available	work can be done	available.	
energy. (work-	Advanced students	in a closed	given an amount of		
energy theorem)	can apply the work-	system.	available energy.	5	5
	energy theorem to				
	examples not directly				
	shown in class.				

NHS-Science Essential Standard 7 (Semester 2)

- **<u>PSP3-HS-1</u>**. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves travelling in various media.
 - Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.
 - Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.

C	Criteria	Advanced Understanding of Standard (4)	Proficient Understanding of Standard (3)	Approaching and Understanding of Standard (2)	Beginning, Does Not Meet Standard (1)	Non- Performance (0, M, I)
S u tl v o a	$V = f \ge \lambda$ itudent nderstands that ne velocity of a vave depends n its frequency nd its vavelength.	Student can solve the wave-velocity equation for velocity, frequency, or wavelength if given two of three variables. Student includes units with numbers. Advanced students can also show how the velocity equation for a wave is really the same as the velocity equation for an object by tracking the units.	Student can solve the wave-velocity equation for velocity, frequency, or wavelength if given two of three variables. Student includes units with numbers.	Student can solve the wave-velocity equation if given two of three variables but does so with frequent errors and/or does not include units.	Student cannot solve the wave- velocity equation for velocity, frequency, or wavelength if given two of three variables	Not enough evidence to determine performance.
d tl w in d o tl	tudent can emonstrate that ne velocity of a vave can ncrease or ecrease based n the medium prough which it ravels.	Student can describe the fact that the velocity of a wave also depends on the medium in which it is moving through and/or the density, temperature, elasticity, and other properties of the medium. Advanced students recognize that waves are differentiated from each other based on frequency and wavelength whereas the speed of the wave traveling through a medium is affected by the properties of the medium itself (temperature, density, elasticity, etc.)	Student can describe the fact that the velocity of a wave also depends on the medium in which it is moving through and/or the density, temperature, elasticity, and other properties of the medium.	Student can describe the fact that the velocity of a wave also depends on the medium in which it is moving through but cannot comment specifically about how this relates to the density, temperature, elasticity, and other properties of the medium.	Student cannot describe the fact that the velocity of a wave also depends on the medium in which it is moving through and/or the density, temperature, elasticity, and other properties of the medium.	Not enough evidence to determine performance.