Waves: Introduction and Types

Instructions: Read through the information below. Then complete the statements at the bottom of the page using the BOLD words from the page.

A wave is a transfer of energy through a medium from one point to another. Some examples of waves include; water waves, sound waves, and radio waves. Waves come in two different forms; a **Transverse** Wave which moves the medium *perpendicular* to the wave motion, and a **Longitudinal** Wave, which moves the medium *parallel* to the wave motion.

Examples of Transverse waves would be a vibrating guitar string or electromagnetic waves, while an example of a Longitudinal wave would be a "Slinky" wave that you push and pull.

Waves have several properties which are represented in the diagrams below. In a Transverse wave the **Crest** and Troughs are the locations of maximum displacement up or down. The **Amplitude** is the measurement of maximum displacement. The **Wavelength** is the distance of one complete wave cycle. For example; the distance from crest to crest or trough to trough would be 1 wavelength.

In a Longitudinal wave, areas of maximum displacement are known as **Compressions** and **Rarefactions**. The stronger the wave, the more compressed and spread out the wave medium becomes.

Fill in the statements using the BOLD words from the above information.

1- Wave motion that is Parallel to wave direction describes a _______ wave.

2- A ______ is the maximum upwards displacement in a Transverse wave.

3- One complete wave cycle is referred to as a ______.

4- Wave motion that is Perpendicular to wave direction describes a ______ wave.

5- A _____ or _____ is the maximum displacement in a Longitudinal wave.

6- An Ocean wave would be an example of a ______ wave.

8- The measurement of displacement is called a wave's _____

7- The distance from one trough to another trough is called a ______.

Waves: Velocity and Frequency

Instructions: Read through the information below. Then complete the calculation problems at the bottom of the page.

The velocity of a wave can be calculated if you have enough information. First you need to know the *Wavelength*, or the length of one complete wave cycle. This could be measured Crest to Crest, Trough to Trough, or any other complete cycle of a wave. The second aspect you need is the wave *Frequency*, or the number of waves or vibrations produced per second. The frequency is measured in Hertz and the Wavelength is measured in meters.

The equation for calculating the velocity of a wave is:

Velocity = Wavelength x Frequency

 $V = \lambda \times f$

This equation works for any wave form, water, sound, or radio waves.

EXAMPLE: A wave as a Wavelength of 5 meters and a Frequency of 10 Hz. What is its velocity?

 $V = 5 \times 10 \rightarrow$

V= 50 meters per second

Solve using the wave velocity equation: (Show your equation set up and math work)
1- A wave has a Wavelength of 12 meters and a Frequency of 10 Hz.
What is its velocity?

2-A wave has a Wavelength of 3 meters and a Frequency of 15Hz. What is its velocity?

3-A wave has a Wavelength of 18 meters and a Frequency of .5 Hz. What is its velocity?

4- A wave has a Wavelength of .5 meters and a Frequency of 100 Hz. What is its velocity?

WAVE PROPERTIES

1 Diagrams A & B each represent waves.

B

(a)

- (i) What type of wave does diagram A represent? ______
- (ii) What type of wave does diagram B represent?
- (iii) How many cycles of the wave are shown in diagram A?
- (iv) How many cycles of the wave are shown in diagram B?
- (b) Which diagram would you use to represent
- (i) a wave travelling across the surface of water _____
- (ii) an acoustic wave (i.e. sound)
- (iii) an electromagnetic wave _____
- (iv) a transverse wave travelling through a slinky _____
- The diagrams below are of a slinky that has been stretched between two points. Diagram A shows the slinky before a wave travels though it. Diagram B shows the slinky at some instant as a wave travels through it. The speed of the wave is 4 m/s.

(i)	Each compression takes 1.5 seconds to travel from one end of the slinky to the other. Use speed = distance / time to calculate at what speed is the wave moving through the slinky?
(ii)	What is the wavelength of the wave travelling through the slinky?
(iii)	use your answers to (i) and (ii) to calculate the frequency of the wave in this example.
(b)	The rate of the vibration causing the compression waves is increased. It still takes 1.5 seconds for a compression to travel through the slinky. How, if at all does the frequency and wavelength of the wave through the slinky change from the situation described in part (a)
frequ	ency
wave	elength