Symbol

A one- or two-letter abbreviation derlved from the element's English or Latin name.

Name
Element's common name.

Mass Number

The sum of the numbers of protons and neutrons in a specific isotope.

Atomic Number

Equal to the number of protons in the nucleus, as well as the number of electrons in the electron cloud.

Atomic Mass

Weighted average of the masses of all the element's isotopes. Rounding the atomic mass to the nearest whole number ylelds the mass number of the most common isotope.

How to Draw a Bohr Model (Note: a Bohr model is a simplified version of the Quantum Model)

1. Find the number of Protons (atomic \#), Neutrons (Mass \# - Atomic \#), and Electrons (equal to protons for a neutral atom) using the Periodic Table.
2. Draw a nucleus (as a circle). Place the number of protons and neutrons in the nucleus ($P=\ldots ., N=\ldots \ldots$)
3. Place the electrons around the outside of the nucleus in the electron shells (also called orbitals or energy levels).
a. The first shell can hold two electrons. If there is more than 2 electrons, a second shell is needed. The second shell can hold 8 electrons. If more than 10 electrons are in an atom, a third shell is needed. The third shell can hold 8 electrons.

1st Electron shell. holds 2 electrons 2nd Electron shell: holds 8 electrors 3 and Electron shell holds 8 electrons

The Quantum Model: (Note: we will use the Bohr model only)

In the quantum model the first orbital is called $1 s$ and can fit 2 electrons. The second orbitals are called $2 s$ (2 electrons) and $2 p$ (6 electrons). The third orbitals are called $3 s$ (2 electrons), $3 p$ (6 electrons), and $3 d$ (10 electrons). The fourth orbitals are called $4 s$ (2 electrons), $4 p$ (6 electrons), $4 d$ (10 electrons), and $4 f(14$ electrons). Beyond the fourth level all orbitals have an s, p, d, and fregion.

B	$\begin{aligned} & P= \\ & N= \end{aligned}$
-	$E=$
Bohr Diagram	
Lewis Structure	B

	$P=$
Ne	$N=$
	$E=$

Bohr Diagram

Lewis Structure
Ne

Periodic Table Basics

1. Which elements had complete outer shells? Give the name and symbol for each.
2. What do you notice about the location of the elements in \#1?
3. Which elements had only one valence electron?
4. What do you notice about the location of the elements in \#3?
5. What do you notice about the number of valence electrons as you move from left to right across a row or period in the periodic table? $(\mathrm{Na} \rightarrow \mathrm{Mg} \rightarrow \mathrm{Al} \rightarrow \mathrm{Si} \rightarrow \mathrm{P} \rightarrow \mathrm{S} \rightarrow \mathrm{Cl} \rightarrow \mathrm{Ar})$
6. What do you notice about the number of energy levels or shells as you move down a group or column in the periodic table? $(\mathrm{H} \rightarrow \mathrm{Li} \rightarrow \mathrm{Na})$
7. Elements are organized into families according to their physical and chemical properties. Identify the elements that you used in Step 5 that belong to each family based on the number of valence electrons. Give the name and symbol for each element.

Alkali Metals - 1 valence electron \qquad
\qquad \& \qquad
Alkaline Earth Metals -2 valence electrons \qquad
\qquad \& \qquad
Boron Family - 3 valence electrons \qquad \& \qquad
Carbon Family - 4 valence electrons \qquad \& \qquad
Nitrogen Family - 5 valence electrons \qquad \& \qquad
Oxygen Family - 6 valence electrons \qquad \& \qquad
Halides - 7 valence electrons \qquad \& \qquad
Noble Gases - Complete outermost shell
\qquad
\qquad , \qquad \& \qquad
8. What do you notice about the location of the elements in each family?
9. How would you classify hydrogen? Why?
10. Predict the number of valence electrons for each element based on its location in the Periodic Table of Elements. You will need to use the table in your textbook.

$$
\text { Barium }=\quad \text { Lead }=\quad \text { Xenon }=\quad \text { Potassium }=
$$

